
J Glob Optim (2007) 38:79–101
DOI 10.1007/s10898-006-9084-2

O R I G I NA L A RT I C L E

Nonlinear optimization with GAMS /LGO

János D. Pintér

Received: 9 August 2006 / Accepted: 11 August 2006 / Published online: 7 October 2006
© Springer Science+Business Media B.V 2006

Abstract The Lipschitz Global Optimizer (LGO) software integrates global and
local scope search methods, to handle a very general class of nonlinear optimization
models. Here we discuss the LGO implementation linked to the General Algebraic
Modeling System (GAMS). First we review the key features and basic usage of the
GAMS /LGO solver option, then present reproducible numerical results to illustrate
its performance.

Keywords Nonlinear (global and local) optimization · LGO solver suite · GAMS
modeling system · GAMS /LGO solver option · Numerical performance analysis ·
Illustrative applications

1 Introduction

Nonlinearity is a key characteristic of a vast range of objects, formations, and processes
in nature and in society. Consequently, nonlinear descriptive models are relevant in
many areas of the sciences and engineering. For related discussions (targeted toward
various professional audiences) consult for instance Aris (1999), Bracken and Mc-
Cormick (1968), Dörner (1996), Gershenfeld (1999), Hansen and Jørgensen (1991),
Murray (1983), Lopez (2005), Steeb (2005), and Stojanovic (2003). Managing nonlin-
ear systems leads to nonlinear optimization—a subject that has been of great practical
interest, at least since the beginnings of mathematical programming. For technical dis-
cussions and further examples, see the topical chapters in Bartholomew-Biggs (2005),
Chong and Zak (2001), Diwekar (2003), Edgar et al. (2001), Pardalos and Resende
(2002), and Hillier and Lieberman (2005).

Algorithmic advances and progress in computer technology have enabled the
development of sophisticated nonlinear optimization software implementations.

J. D. Pintér (B)
Pintér Consulting Services Inc., 129 Glenforest Drive, Halifax, NS, B3M 1J2, Canada
e-mail: jdpinter@hfx.eastlink.ca

80 J Glob Optim (2007) 38:79–101

Among the currently available software products, one can mention LANCELOT
(Conn et al. 1992) which implements an augmented Lagrangian based solution ap-
proach. Sequential quadratic programing methods are implemented in EASY-FIT
(Schittkowski 2002), filterSQP (Fletcher and Leyffer 1998, 2002), GALAHAD (Gould
et al. 2002), and SNOPT (Gill et al. 2003). Another prominent class of methods is
based on the reduced gradient (RG) approach and its generalization (GRG). The RG
methodology is implemented, e.g., in MINOS (Murtagh and Saunders 1995) which
includes also other solvers. GRG strategies are implemented in LSGRG (Lasdon and
Smith 1992; Edgar et al. 2001), and in CONOPT (Drud 1996). Interior point meth-
odology is used in LOQO (Vanderbei 1999) and in KNITRO (Waltz and Nocedal
2003). Finally—but without claiming completeness—one can mention gradient-free
quadratic model-based solver implementations such as UOBYQA (Powell 2002),
and heuristic direct search methods reviewed by Wright (1996). A recent issue of
SIAG/OPT Views and News (Leyffer and Nocedal 2003) provides concise, informative
reviews regarding the state-of-art in nonlinear optimization, although the contributed
articles mainly discuss optimization software with a local search scope. A detailed
review of local and global optimization algorithms is provided by Bliek et al. (2001).

Without a suitable starting point, even the best local search methods could
encounter difficulties in solving general nonlinear models. Specifically, such meth-
ods will typically find only a local solution (when better solutions may exist), or they
may return a locally infeasible result in (globally) feasible models. Clearly, if one does
not have sufficient insight to guarantee an essentially convex model structure, or does
not have access to a good starting point that will lead to the best possible solution,
then the application of a global scope search strategy becomes desirable. We wish to
point out that this line of argument does not “dismiss” high-quality local optimiza-
tion software that has been in use for decades with considerable success. A global
scope search, however, can bring tangible benefits to both model development (by
enabling more general and thereby perhaps more realistic formulations) and solution
(by making possible global search when it is not guaranteed that local search will
suffice).

The field of global optimization (GO) has been gaining increasing attention in
the past few decades, and in recent years it has reached a certain level of matu-
rity. The number of textbooks focused on GO is well over one hundred worldwide.
For illustration, the Handbook of Global Optimization volumes edited by Horst and
Pardalos (1995) and by Pardalos and Romeijn (2002) are mentioned. These two
volumes cover the most frequently used GO model types and solution strategies,
including information also on software and various application areas.

The key theoretical developments in GO have been followed by increasingly
efficient solution algorithms and their software implementations. While most GO
software products reviewed by Pintér (1996b) have been perhaps “academic” rather
than “professional”, a decade later a number of companies offer professionally devel-
oped and maintained GO software. To illustrate this point, it suffices to visit the web
sites of Frontline Systems, the GAMS Development Corporation, LINDO Systems,
Maplesoft, Maximal Software, Paragon Decision Technology, TOMLAB, or Wolfram
Research, to check out platform-specific GO software information. One should also
mention here at least a few informative, non-commercial web sites that discuss GO
models, algorithms, and technology. For instance, the web site of Neumaier (2005a)
is devoted to global optimization in its entirety; Fourer (2005) and Mittelmann and

J Glob Optim (2007) 38:79–101 81

Spellucci (2005) also provide valuable discussions of nonlinear programing methods
and software, with numerous further links and pointers.

In this article, we present the GAMS /LGO software implementation for handling
nonlinear optimization models. First we formulate and briefly analyze the general GO
model, then review the key features of the LGO solver suite, and discuss its GAMS-
specific implementation. We also present fully reproducible numerical results, to illus-
trate the performance of GAMS /LGO in comparison with several state-of-the-art
global and local solvers available with GAMS.

2 Global optimization: model statement and specifications

Consider the continuous global optimization (CGO) model stated as

min f (x) subject to x ∈ D := {x : l ≤ x ≤ u gj(x) ≤ 0 j = 1, . . . , m}. (1)

In (1) we apply the following notation and assumptions:

• x ∈ Rn n-dimensional real-valued vector of decision variables,
• f : Rn → R continuous (scalar-valued) objective function,
• D ⊂ Rn non-empty set of feasible solutions, a proper subset of Rn: this

feasible set is defined by
• l ∈ Rn, u ∈ Rn component-wise finite lower and upper bounds on x, and
• g : Rn → Rm a finite collection (m-vector) of continuous constraint functions.

Let us note that the constraints gj j = 1, . . . , m in (1) could be followed in (1) by
arbitrary (≤, =, ≥) relation signs, and that explicit bounds on the constraint function
values could also be imposed. Such—formally more general—models are directly
deducible to the model statement (1). Without going into details that are not relevant
here, let us also point out that models with bounded integer variables can be brought
to the form (1). This, of course, also implies the formal coverage of mixed integer
models by the CGO model.

The compactness of D and the continuity of f (by the Bolzano–Weierstrass theorem)
guarantee that the global solution set X∗ of the CGO model is non-empty. In many
cases of practical relevance, X∗ consists of a unique point x∗. However, it is easy to
construct GO model-instances in which X∗ is finite (with cardinality greater than one),
countable, non-countable, or it can be even a subset of D with a positive volume. For
the sake of meaningful algorithmic convergence statements, we typically assume that
X∗ is at most countable. This is rarely a restriction in well-posed, practically motivated
problems.

Without further structural assumptions, model-instances of (1) could lead to very
difficult numerical problems. For example, the feasible set D could be disconnected,
and some of its components could be non-convex; furthermore, the objective function
f could well be multi-extremal over D. In such cases, the CGO model (1) can have
an unknown number of global (as well as local) solutions. Let us recall that there is
no generally applicable, constructive algebraic characterization of global optimality.
In traditional nonlinear programming, numerical methods frequently aim at solving
the Lagrange or Karush–Kuhn–Tucker (KKT) system of necessary optimality condi-
tions, to find local solutions. The corresponding feasibility system of equations and
inequalities to find points from X∗ becomes another GO problem, often at least as
complex as the original model (1). Neumaier (2004) presents an interesting discussion

82 J Glob Optim (2007) 38:79–101

of this point, indicating that the number of KKT points to check for optimality could
grow exponentially as the model size (number of variables n and/or constraints m)
increases. A very simple illustration of this general observation is to minimize a con-
cave function over the vertex set of an n-dimensional box region: here all 2n vertices
are local optima.

To illustrate the potential numerical difficulty of CGO models by an example, let
us consider the problem of finding the solution(s) to the equations

eqn1 := x − sin(2x + 3y) − cos(3x − 5y) = 0,
eqn2 := y − sin(x − 2y) + cos(x + 3y) = 0.

(2)

We will search for solutions in the postulated variable range x ∈ [−2, 3], y ∈ [−2.5, 1.5].
Figure 1 shows the surface plot of the error function (eqn 1)2 + (eqn 2)2 which

vanishes at the solution(s). Although this reformulation leads to a rather simple
(merely two-variable, box-constrained) model-instance of (1), the resulting model
has no apparent structure that could be easily exploited by a search procedure.

In line with the discussion above, problem (2) could have multiple global and
local solutions. For example, one of the approximate numerical solutions is x∗ ≈
0.8388353863, y∗ ≈ 0.5371194096; the residual absolute errors of the equations are
eqn 1 ≈ 2.12628 · 10−10, eqn 2 ≈ −5.21127 · 10−11. This solution has been produced
using the LGO solver implementation described by (Pintér and Kampas 2003): later
on we will produce another solution using GAMS/LGO.

Theoretically, one would like to find exactly all global solutions x∗ ∈ X∗, by apply-
ing a suitable search mechanism. However, even unconstrained local search methods
in (general) nonlinear optimization require an infinite numerical procedure. There-
fore a more realistic goal is to find suitable approximations of points in X∗, and of the
corresponding optimum value f ∗. In practice, this needs to be attained on the basis
of a finite number of model function evaluations at algorithmically selected search

-2

-1

0

1

2

3

-2

-1

0

1

0

5

10

15

20

-2

-1

0

1

2

Fig. 1 An illustrative CGO model-instance

J Glob Optim (2007) 38:79–101 83

points. Formally, one could accept an approximate numerical solution x∗
a that satisfies

the relation

ρ
(
x∗

a, X∗) := min
x∗∈X∗ ρ

(
x∗

a, x∗) ≤ γ . (3)

In (3) ρ is a given metric—typically defined by the Euclidean norm introduced in Rn−
and γ > 0 is a fixed tolerance parameter. (In words, x∗

a should be “sufficiently close”
to at least one of the global solutions.) Similarly, one could accept an approximate
solution x∗

e ∈ D that satisfies the relation

f
(
x∗

e
) ≤ f ∗ + ε, (4)

In (4) ε > 0 is another tolerance (accuracy) parameter. Here we formally assume that
f ∗ is known, or that it can be properly estimated. In practice, one searches for feasible
solutions that are within a specified tolerance from the “best possible” solution, or
from its valid lower bound. Theoretically, we expect that the lower bounding pro-
cedure is consistent: i.e., that we can provide increasingly accurate bound estimates
that converge to f ∗. In numerical practice, this may also be a difficult problem, in
“unstructured” GO models when such estimates are difficult (or even impossible) to
produce.

To ensure the numerical solvability of model (1) in the sense of (4)—on the basis
of a finite sample point sequence from D—we often require the Lipschitz-continuity
of the model functions. Recall that a function h is Lipschitz-continuous in the set D,
if the relation

|h(x1) − h(x2)| ≤ L‖x1 − x2‖ (5)

is valid for all pairs x1, x2 from D. (In the right-hand side of (5), the Euclidean norm
is used.) The value L = L(D, h) ≥ 0 is a suitable Lipschitz constant of h over D.
Let us emphasize that the smallest possible value of L is typically unknown (for a
smooth function h, it is the global maximum of ‖∇h(x)|| over the set D). Therefore
the availability of a proper overestimate (with respect to all model functions f and
gj j = 1, . . . , m) is often postulated theoretically, or it is estimated in practice: for
related discussions, consult Pintér (1996a), or Strongin and Sergeyev (2000). As it
is well-known, if f is Lipschitz-continuous in [l, u] and L(D, f) is a valid Lipschitz
constant, then even a single point x chosen from [l, u] and the corresponding func-
tion value f (x) supports the computation of a lower bounding function for f over
the entire box [l, u]. Such basic (or more advanced) bounding information can be
built into branch-and-bound search procedures that will then have rigorous global
convergence properties (Horst and Tuy 1996, Pintér 1996a).

3 LGO solver suite: algorithm components and current implementations

The CGO model (1) with a postulated Lipschitz structure is still very general, and
it encompasses most GO problem types that occur in practice. As a consequence, it
includes also very difficult problem-instances that pose a tough challenge in any com-
putational environment of today or tomorrow. For given CGO model-instances, the
“most suitable” solution approach could vary to a considerable extent. A “universal
scope” GO solver strategy—and the corresponding software—is expected to work for

84 J Glob Optim (2007) 38:79–101

broad model classes, although its efficiency could be lower for certain problem types
when compared to more specialized solvers. On the other hand, highly specialized
algorithms often will not work for GO models outside of their intended scope.

LGO—abbreviating a Lipschitz(-Continuous) Global Optimizer—has been
designed to handle in principle the entire class of models defined by (1), without
requiring any special structure beyond continuity or Lipschitz-continuity. For exam-
ple, the objective function displayed in Fig. 1 is Lipschitz-continuous, but it could be
difficult to place it into a more specific category in a constructive and algorithmi-
cally useful manner. This overall design principle and the corresponding choice of
component algorithms makes LGO applicable even to “black box” models. The latter
category specifically includes business confidential models provided as an object file or
a dynamic link library. It also includes models that incorporate computational proce-
dures such as special functions, parametric differential equations, integrals, stochastic
simulation, and so on. At the same time, models with a given specific structure—e.g.,
an indefinite quadratic objective f over a convex set D—can also be solved by LGO,
although more specialized software can be more efficient to handle such models.

LGO (as a proprietary solver system) has been gradually developed since 1990,
with continuing development and maintenance. The theoretical results underpinning
its global search algorithms are discussed in Pintér (1996a), with platform-specific
implementations described in articles and user manuals (Pintér 1997, 2001a, 2002,
2003a, 2004, 2005a,b,c,d, Pintér and Kampas 2003; Pintér et al. 2004). Therefore only
a concise review of its key features is included here.

The overall solution approach in LGO is based on the integration of theoretically
convergent global and efficient local search strategies. Currently, the following search
algorithms are offered as LGO components:

• adaptive partition and search (branch-and-bound) based global search (referred
to as BB)

• adaptive global random search (single-start) (GARS)
• adaptive global random search (multi-start) (MS)
• constrained local search by the generalized reduced gradient method (LS).

Within a given LGO solver run, the user can choose any of the global solver modes
BB, GARS, or MS. Upon completion, the selected global solver component is auto-
matically followed by the local solver (search phase). The LS option can be used also
in a stand-alone mode, started from a user-supplied initial solution or—in lack of such
information—from an automatically generated (default) starting point.

The BB solver component implements a theoretically convergent algorithm, assum-
ing Lipschitz-continuous model functions f and g. In models with a unique global
solution x∗, the algorithmically generated search point sequence {xk} converges to
x∗. (Theoretically, in models which have an at most countable set X∗, all elements
of X∗ are limit points of a corresponding sub-sequence of {xk}.) The BB approach is
based on the underlying assumption that one is able to provide valid overestimates of
the Lipschitz constant, for each model function, throughout the iterations. In practice,
such a condition is typically only approximated by algorithm implementations. The BB
implementation in LGO combines its adaptive set partition steps with deterministic
and randomized sampling strategies within the generated subsets. The latter strat-
egy supports also the application of statistical bounding procedures. The BB solver

J Glob Optim (2007) 38:79–101 85

module is expected to generate a close approximation of at least one of the global
solution points, before LGO switches over to local search.

Regarding the GARS and MS solver modes, it is well-known that properly
constructed stochastic search algorithms possess global convergence properties, under
mild analytical conditions. Specifically, each convergent subsequence of the sequence
{x∗

k} of improving global solution estimates converges to a point of X∗, with probabil-
ity 1. This statement applies to instances of model (1) defined by continuous functions
f and g, even without the Lipschitz assumption. The GARS solver mode is based on
a combination of random search methods and an attempt to focus the global search
effort on the region which—on the basis of the actual sample results—is estimated to
contain the global solution point (or, in general, one of these points). Similarly to BB,
this method is used to generate an initial solution for subsequent local search.

The MS global search component MS is also based on the theoretical stochastic
global convergence properties mentioned above. In MS the total allocated global
sampling effort is distributed among several global searches. Each of these leads to
a “promising” starting point used in subsequent LS. Typically, MS requires the most
computational effort (due to its multiple local searches); however, in complicated
models, it often finds the best numerical solution. Therefore the MS + LS combina-
tion is chosen as the recommended default solver mode, but it is straightforward to
select another option (LS, BB + LS, GARS + LS).

All three global solvers are gradient-free, requiring only model function value
information. Specifically, their operations are partially driven by iteratively calculated
values of the exact penalty function

f (x) +
∑

j∈E

|gj(x)| +
∑

j∈I

max(gj(x), 0). (6)

In (6) the index sets E and I denote the subsets of equality and inequality constraints,
respectively. In the LS phase finite difference based gradient approximations are used
(tacitly assuming at least local smoothness, in order to guarantee theoretical local
convergence). Again, this gradient-free approach supports also the optimization of
“black box” systems.

Let us note here that “black box” model handling from GAMS may become useful,
e.g. when interfacing GAMS with other (C/C++, Delphi, Excel, Java, MATLAB, Ora-
cle, SQL, Visual Basic, etc.) environments: consult, e.g. Ferris (2005) and Kalwelagen
(2005). A similar comment applies also to other LGO implementations linked to other
modeling environments.

As already mentioned, each of the LGO global solver modes is automatically fol-
lowed by the local search phase(s). The local solver embedded in LGO implements a
dense nonlinear optimization algorithm, without postulating or exploiting any specific
further model structure. This GRG solver implementation is based on classical non-
linear optimization techniques discussed, e.g. by Edgar et al. (2001). The application
of the local search mode theoretically assumes that the CGO model (1) is defined
by continuously differentiable functions, at least in the local region(s) of attraction
where this solver mode is used.

As a result of using the outlined solution approach, LGO will return—barring
numerical problems and “unsuitable” option settings—a global search based solution
(BB + LS, GARS + LS), possibly several such solutions (MS + LS), or a LS based solu-
tion LS. The term “global search based solution” describes a solution that—according

86 J Glob Optim (2007) 38:79–101

to extensive numerical experience—often is very close to the global solution (or one
of these solutions), or at least is a high-quality feasible solution. Let us emphasize here
the gap between global convergence theory and software implementation and usage
in practice, before dismissing such an outcome. It strongly depends on the practical
circumstances and user demands, whether we wish to find a rigorously guaranteed
“very precise” solution (that could require hours/days/weeks/months/years of pro-
gram runtime), or we need/prefer to get a numerical solution in seconds/minutes. An
honest look at the deterministically or stochastically guaranteed “gap” between the
best solution found and the (unknown) best possible solution, in a time-limited run,
often can be a humbling experience, when trying to solve models of realistic size and
complexity.

Since 1990, LGO—equipped with a text input/output interface—has been
implemented using several programing language platforms. These include profes-
sional Fortran compilers (Lahey Fortran 77/90, Lahey-Fujitsu Fortran 95, Digital/
Compaq/Intel Visual Fortran 95, g77, g95, and some others), with direct connectivity
to C/C++ models (using e.g. Borland C/C++, Microsoft Visual C/C++, gcc, lcc-win32,
and others). The basic (compiler based) LGO implementation can be equipped with a
Windows-style GUI, thereby providing an integrated development environment that
can be used in conjunction with C and Fortran compilers. The compiler-based and GUI
enhanced LGO implementations are discussed in (Pintér 1997, 2001a, 2002, 2005a).

In addition to the above core implementations, LGO is available as a callable
library, to use in conjunction with several optimization modeling languages and with
integrated scientific-technical computing systems. Currently, these include the follow-
ing (in alphabetical order, the user manuals and technical reports indicate the year of
release):

• AIMMS /LGO solver option (Paragon Decision Technology 2005, Pintér 2005c)
• GAMS /LGO solver option (GAMS Development Corporation, 2005; Pintér

2003a)
• Global Optimization Toolbox for Maple (Maplesoft 2005, Pintér 2004, Pintér and

Purcell 2006)
• MathOptimizer Professional for Mathematica (Wolfram Research 2005, Pintér

and Kampas 2003)
• MPL /LGO solver option (Maximal Software 2005, Pintér 2005d)
• TOMLAB /LGO solver option to use with MATLAB (MathWorks 2005;

TOMLAB 2005; Pintér et al. 2004)

Peer reviews discussing several of these implementations are also available:
consult Benson and Sun (2000), Cogan (2003), Castillo (2005), Henrion (2006), and
Wass (2006).

4 GAMS and the GAMS /LGO solver option

The General Algebraic Modeling System (GAMS) is a high-level optimization
modeling environment that—making use of its solver options—supports the devel-
opment, analysis and solution of a broad range of optimization problems. GAMS is
capable of handling advanced “real-world” applications, by allowing users to build
prototypes as well as large-scale models. Models can be developed, solved and

J Glob Optim (2007) 38:79–101 87

documented simultaneously, maintaining the same GAMS model file. The GAMS
system has been available since 1987, and it has a significant world-wide user base.
The first edition of the GAMS User’s Guide (Brooke et al., 1988) has been both
extended and enhanced by accompanying documentation that includes the extensive,
hyperlink-enabled GAMS documentation by McCarl (2004).

The website www.gams.com provides further useful information: therefore only
some of the key features and facts are highlighted here. The GAMS modeling lan-
guage is similar to commonly used procedural programming languages such as C,
Fortran, Pascal. GAMS offers interfaces to other development environments, includ-
ing, e.g., MS Excel, MS Access, and MATLAB. GAMS can also be embedded in
various application environments: these include C/C++, Delphi, Java, Visual Basic,
and WebSphere. The GAMS Model Library is a large (and growing) collection of
models originating from a variety of application areas such as economics, economet-
rics, engineering, finance, management science, and operations research. The library
includes examples for all supported model types. Many of the models are of realistic
size and complexity, in addition to collections of “academic” test problems. The model
converter program CONVERT transforms a GAMS model-instance into a format
used by other modeling and solver systems, and hence provides significant assistance
in sharing test models by users of the various modeling and solver systems. A further
valuable service is GAMS World (http://www.gamsworld.org) with the objective of
bridging the gap between academic research and the practice of optimization. The site
includes a large additional set of documented models and performance analysis tools.

All modeling and solver features, including the full documentation, are available
through an integrated development environment (GAMS IDE) on MS Windows plat-
forms. Command-line GAMS usage is also supported for Windows/Linux/Unix/Mac
environments. In addition to advanced model development features, GAMS offers
direct links to a range of solver options. These solvers can handle both general (catego-
rized as linear, nonlinear, pure and mixed integer, and stochastic) and more specialized
(such as complementarity, equilibrium, and constrained nonlinear systems) models.
LGO has been added to the solvers available in the GAMS modeling environment in
2003. Pintér (2003a) provides a concise GAMS /LGO user documentation: portions
of that description are used here, with additional details. (All GAMS solver man-
uals are available through the GAMS web site.) For the sake of completeness, let
us remark that two other global solvers—BARON and OQNLP—are also available
for the GAMS platform. BARON (Tawarmalani and Sahinidis 2002) is based on a
successive convexification approach by constructing enclosure functions and related
bound estimates that drive the global search. In its solution procedure, BARON relies
on using other solvers: within GAMS, these are MINOS and CPLEX (and optionally
others that are modularly available). OQNLP—similarly to LGO—is a stand-alone
solver option: it uses a multi-start global search approach based on the OptTek search
engine, in combination with the well-received local solver LSGRG. For a recent
discussion of OQNLP and its performance, consult Ugray et al. (2006).

The basic structure of the GAMS /LGO modeling and solution procedure is dis-
played in Fig. 2.

The steps of model development, verification and preprocessing, solution by LGO,
optional further solver calls, and report generation are tightly integrated. As a result,
our numerical experiments indicate relatively little runtime overhead associated with
the operations of GAMS, when compared to the core (compiler-platform based) LGO
implementation.

88 J Glob Optim (2007) 38:79–101

Fig. 2 GAMS /LGO modeling and solution procedure

The GAMS/LGO interface is similar to those of other GAMS solvers, and many
options such as resource and iteration limits can be set directly in the GAMS model.
To provide LGO-specific options, users can make use of solver option files: consult the
solver manuals (GAMS Development Corporation 2005) for more details regarding
this point. The list of the current GAMS/LGO options is shown below: see Tables 1
(general options similar to those also for other solvers) and 2 (LGO specific options
and parameters). The tables display the option lists, with added brief explanation and
the default settings.

Clearly, there is no “universal recipe” to provide options and switches to a gen-
eral purpose nonlinear solver like LGO that will be adequate to handle all possible
models. (Recall here the notes related to global search based solutions.) However,
according to fairly extensive numerical experience, the default option settings shown
above are suitable to solve many small to moderate size GO problems without any
“tweaking” of the parameters. This general observation has been validated for many
of the standard academic tests known from the GO literature, using GAMS /LGO
or other LGO implementations. In the next section we will illustrate this point, by
presenting model examples formulated in GAMS and solved by LGO. The current
GAMS (release 22.0) and the current (February 2006) LGO versions are used in
the calculations. All other solvers mentioned are used in their default mode, unless
specifically noted otherwise. The illustrative runs reported here have been done on
an AMD Athlon 64 3200+ 2.00 GHz single processor based desktop computer, run-
ning under the Microsoft Windows XP Professional (Version 2002, Service Pack 2)
operating system.

5 Using GAMS /LGO: illustrative examples

Example 1 Solving a pair of transcendental equations

We assume that not all readers are familiar with GAMS: therefore first an easy-
to-follow example is presented. This model is based on problem (2) introduced earlier.
All GAMS language elements are denoted by Courier boldface fonts. Explana-
tory comments are given between the rows denoted by $ontext and $offtext, and
in rows started by the symbol *. The GAMS output details shown are only slightly

J Glob Optim (2007) 38:79–101 89

Table 1 GAMS /LGO general options

Option Description Default

tlimit Runtime limit in seconds. This
is equivalent to the general
GAMS option reslim. If spec-
ified, then it overrides the
reslim option.

1,000

log_time Iteration log time interval
in seconds. GAMS log output
is generated at every log_time
seconds.

0.5

log_iter Iteration log time interval.
Log output is written after
every log_iter iteration.

10

log_err Iteration log error output.
Error reported (if necessary)
after every log_err iterations.

10

debug Debug option. Prints out com-
plete LGO status report to
listing file.

0

0 No
1 Yes

callConopt Number of seconds given for an
optional secondary optimiza-
tion phase using CONOPT (when
available). CONOPT terminates
after at most CallConopt sec-
onds. This solver phase also
determines duals for the final
solution point.

5

help Prints all available GAMS and
GAMS /LGO solver options in the
log and listing files.

No printout

formatted for the purposes of this article (to fit the available space better, when nec-
essary).
$title Global Optimization Model Example GO_test_2v_2c

$ontext

Find a solution to the system of nonlinear equations

x-sin(2x+3y)-cos(3x-5y)=0

y-sin(x-2y)+cos(x+3y)=0.

This is a 2-variable, 2-constraint global optimization test
problem in itself that could have (in fact, it has) multiple
solutions. Therefore we will determine the minimal norm solution.
$offtext

* Define optimization model
variables obj, x, y;
equations defobj, con1, con2;
* Define an objective function as the squared norm of the
solution to the equations.
defobj.. obj =e= x*x+y*y;

90 J Glob Optim (2007) 38:79–101

Table 2 GAMS/LGO specific options

Option Description Default

opmode Specifies the LGO search mode used. 3
0 Local search started from the given
nominal solution, without a preceding
global search (LS)
1 Global branch-and-bound search and
local search (BB+LS)

2 Global adaptive random search and local
search (GARS+LS)

3 Global multistart random search and
local search (MS+LS)

G_maxfct Maximum number of merit (model) function
evaluations before termination of global
search phase (BB, GARS, or MS). In the
default setting, n is the number of vari-
ables and m is the number of constraints.
The difficulty of global optimization
models varies greatly: for difficult mod-
els, g_maxfct can be increased as deemed
necessary.

500(n+m)

max_nosuc Maximum number of merit function eval-
uations in global search phase (BB,
GARS, or MS) where no improvement is
made. Global search phase terminates upon
reaching this limit. For difficult mod-
els, max_nosuc can be increased as deemed
necessary.

100(n+m)

penmult Constraint penalty multiplier. Global
merit function is defined as objective +
the constraint violations weighted by
penmult.

100

acc_tr Global search termination criterion
parameter (acceptability threshold).
The global search phase (BB, GARS, or MS)
ends if an overall merit function value
is found in the global search phase that
is less than or equal to acc_tr.

−1.0E10

fct_trg Target objective function value; a par-
tial stopping criterion in the local
search phase.

-1.0E10

fi_tol Local search (merit function improvement)
tolerance; a stopping criterion in the
local search phase.

1.0E-6

con_tol Maximal constraint violation tolerance in
local search.

1.0E-6

kt_tol Kuhn-Tucker local optimality condition
violation tolerance.

1.0E-6

irngs Random number seed. 0
Var_lo Smallest (default) lower bound, unless

set by user.
−1.0E+6

Var_up Largest (default) upper bound, unless set
by user.

1.0E+6

Bad_obj Default value for objective function, if
evaluation errors occur.

1.0E+8

J Glob Optim (2007) 38:79–101 91

* Define the constraints.
con1.. x-sin(2*x+3*y)-cos(3*x-5*y) =e= 0 ;
con2.. y-sin(x-2*y)+cos(x+3*y) =e= 0;
* Define bounds and nominal values.
* See the corresponding .lo, .l and .up index notation.
x.lo = -2; x.l = 2.5; x.up = 3;
y.lo = -2.5; y.l = 1.3; y.up = 1.5;
* The model m is defined by the information given above.
model m / all /;
* Invoke the LGO solver option for solving this nonlinear
* programming (NLP) model.
option nlp=lgo;
solve m minimizing obj using nlp;
* Set precision for the display of results.
option decimals = 8;
* Display the solution found.
display obj.l, x.l, y.l;

The summary of the GAMS /LGO run and its results – cited directly from the corre-
sponding GAMS log file – are displayed below:
LGO 1.0 Aug 1, 2005 WIN.LG.NA 22.0 003.000.000.VIS
Lib005-060224

LGO Lipschitz Global Optimization
Copyright (C) Pinter Consulting Services, Inc.
129 Glenforest Drive, Halifax, NS, Canada B3M 1J2
E-mail : jdpinter@hfx.eastlink.ca
Website: www.pinterconsulting.com

1 defined, 0 fixed, 0 free
2 LGO equations and 2 LGO variables

Iter Objective SumInf MaxInf Seconds Errors
2409 9.563139E-02 0.00E+00 0.0E+00 0.015

- - - LGO Exit: Normal completion - Global solution

The solution arguments and the optimum value (to the maximal 8 decimals preci-
sion supported by GAMS) are x ≈ −0.17334605, y ≈ −0.25609087, obj ≈ 0.09563139.

Recall that the LGO iteration count (2409 in this example) is based on the total
number of model function evaluations in the (default) multi-start global and local
search phases, without using analytical gradient or higher order information. The
total runtime is approximately 0.015 seconds (note that very small runtimes are some-
times indicated as 0.000 solution time by GAMS).

As shown below, the same model happens to be solvable also by LGO’s local search
mode: this is invoked by the setting opmode = 0 in the options file lgo.opt.
- - - Using option file I:\...\gamsdir\lgo.opt

> opmode=0

1 defined, 0 fixed, 0 free
2 LGO equations and 2 LGO variables

92 J Glob Optim (2007) 38:79–101

Iter Objective SumInf MaxInf Seconds Errors
291 9.921421E-01 0.00E+00 0.0E+00 0.000

— LGO Exit: Normal completion - Local solution

Here LGO uses only 291 model function evaluations, and finds a local solution with a
greater norm than the global search based solution: x ≈ 0.83883539, y ≈ 0.53711941,
obj ≈ 0.99214207.

As indicated earlier, GAMS /LGO can also be used in conjunction with other
available solvers. For instance, an LGO solver run could be directly followed by a call
to the local NLP solver CONOPT (Drud 1996) from the best solution point found,
assuming the availability of that solver. Such polishing steps may be especially use-
ful in difficult models, since model re-scaling and restart invoked by using another
solver could, in general, improve the precision of the solution found. If all went well,
then CONOPT will essentially just confirm the solution found by LGO as optimal
(without distinguishing between global or local solutions). This is the case also in the
example above. At the same time, the local solvers MINOS, CONOPT, and SNOPT
all report infeasible results for this model when used on their own, indicating the gen-
uine need for a global solver to handle this very small (two-variable, box-constrained
GO) model. Let us note also that LGO has found a local solution in its LS mode that
CONOPT could not improve. The OQNLP solver returns the same global solution
as LGO (while cautiously stating that it is a local solution). The BARON solver can
not handle trigonometric functions (as of the version BARON 7.2.5 August 1, 2005,
available to the author), and thus it could not be used to solve this illustrative example.

This numerical example illustrates that nonlinear—especially, global—optimization
models can be truly challenging, even in relatively simple, small-scale instances. This
fact in itself motivates the use of several solver options whenever available.

Example 2 Packing identical size circles in the unit circle

Next, we consider a well-known circle packing model that has been intensively studied
at least for several decades, mostly by “pure” mathematicians (up to recent times, with
no or modest use of computers). Given the unit circle C (of radius 1), and a positive
integer k, find a set of k identical size circles Ci i = 1, . . . , k with the maximal possible
radius r = r(k) so that all Ci are contained by C, in a non-overlapping arrange-
ment. For illustration, an optimized configuration for k = 20 is displayed below. This
arrangement has been found and visualized by using the MathOptimizer Professional
(LGO linked to the Mathematica platform) software implementation (Pintér and
Kampas 2003).

There exists a significant body of literature (books, articles, dissertations, and web
sites) discussing various packings of identical size circles. For example, Melissen (1997)
provides a detailed review of packing model variants and related analytical results,
with more than 350 topical references. For the problem stated above, analytical proofs
are known only for k ≤ 11 (as per Melissen’s cited work), although putative arrange-
ments are known (as of today) for up to about 500 circles. With respect to the best
known configurations, we will use the information presented by Specht (2005): this
website also provides further topical references.

We will assume that the unit circle “container” is centered at the origin. For a given
k, denote the optimized circle radius by r = r(k), and the centre of circle i by ci =
(xi, yi) i = 1, . . . , k. Then we can formulate the circle packing problem as shown below.

J Glob Optim (2007) 38:79–101 93

maximize r
2r ≤ ||ci − cj||, 1 ≤ i < j ≤ k,
‖ci‖ + r ≤ 1, 1 ≤ i ≤ k,
0 ≤ xi ≤ 1, 1 ≤ i ≤ k,
0 ≤ yi ≤ 1, 1 ≤ i ≤ k,
0 ≤ r ≤ 1.

(7)

Here ‖ci − cj|| = [(xi − xj)
2 + (yi − yj)

2]1/2 and ‖ci‖ := (x2
i + y2

i)
1/2.

Model (7) has 2k + 1 decision variables, k(k − 1)/2 non-convex (reverse convex)
constraints that represent the “circles do not overlap” condition, and k convex nonlin-
ear constraints that represent the “all circles in container” condition. Observe that the
number of non-convex constraints increases essentially at a quadratic rate as k grows:
this fact makes model (7) and similar problems rather tough to solve by generic GO
software. Let us also point out that this model has obvious structural symmetry which
could be exploited in a modeling and solution procedure. (Fig. 3 shows essentially the
same configuration as Specht’s website for the k = 20 case, except that it is rotated,
and that the innermost circle can be moved around to some extent.) For example, a
lexicographic arrangement of the circle centers could be required: this would narrow
the search domain, but also would lead to additional model constraints. Instead of
following such a modeling path, we will use GAMS /LGO and several other solvers
in a completely “blind” manner, since we are interested here only in their generic
solver capabilities. (Again, all solvers will be used with their default settings.) Notice
additionally that the variable bounds could be made a bit tighter as a function of
k, but again—in this illustrative example—we take the “easy road to modeling” on
purpose. The only tighter bound that we shall use is 0.05 ≤ r ≤ 0.4, based on the fact
that we will solve model-instances with k = 5, 10, 15, . . . , 60. (These bounds could also

Fig. 3 Packing 20 uniform size circles in the unit circle by global optimization

94 J Glob Optim (2007) 38:79–101

be made tighter.) The current standard GAMS /LGO solver is set up to handle max-
imally 3,000 variables and 2,000 constraints (the general constraint handling limit is
in addition to the explicitly handled variable lower/upper bounds): hence, the k = 65
instance would exceed the constraint limitation.

A possible GAMS formulation of the circle packing problem (7) is displayed below.
The example also illustrates the compact and transparent nature of the GAMS model
formulation. In particular, notice (see the related in-code note) the immediate scala-
bility of the model by changing a single value. Let us also remark that instead of the
non-linear constraints stated in (7) their equivalent forms

4r2 ≤ ||ci − cj‖2 1 ≤ i < j ≤ k,

‖ci||2 ≤ (1 − r)2 1 ≤ i ≤ k

are used in our GAMS model.

$title Packing identical size circles in the unit circle

$ontext
Given the unit circle (of radius 1), find a set of identical
size circles with an optimized (maximal) radius r so that all
such circles are contained by the unit circle, in a non-overlapping
arrangement.

One can set up model-instances simply by changing the second
index below: that is, i1*ik will define the k-circle model-instance.
$offtext
Sets

i / i1 * i5 / ;
* The alias command gives more than one name to a set.
alias (i, j) ;
* Here we define the set ij(i,j) of ordered pairs i,j i<j.
set ij(i,j);
ij(i,j)$ (ord(i) < ord(j)) = yes;

variables

r
x(i)
y(i);

* Note that the equations keyword is interpreted as
* constraints (hence, it also covers inequalities). (sqr(z)
* denotes z*z.)
equations

circumscribe(i)
nooverlap(i,j);

circumscribe(i).. sqr(1.-r) =g= sqr(x(i)) + sqr(y(i));
nooverlap(ij(i,j)).. sqr(x(i)-x(j))+sqr(y(i)-y(j))
=g= 4*sqr(r);

J Glob Optim (2007) 38:79–101 95

x.lo(i) = -1.; x.up(i) = 1.;
y.lo(i) = -1.; y.up(i) = 1.;
r.lo = 0.05; r.up = 0.4;

model m /all/;

solve m using nlp maximizing r;

In all program runs, first we use LGO, automatically followed by CONOPT: as
discussed earlier, this combination could (and in some cases, does) lead to improved
results. The results for k = 5, 10, 15, . . ., 60 packed circles are summarized by Table 3. In
the table heading “k” denotes the number of circles; the column entries under “LGO”
are the optimized circle radii r = r(k) found by LGO in itself; while “LGO + CON-
OPT” heads the column of radii found by the sequential combination of the two
solvers. The “Best known result” column is cited from (Specht 2005), rounded to the
11-decimal precision reported by GAMS / LGO + CONOPT. The “NFE” denotes
the number of model function evaluations done by LGO. The “Runtime” column
shows the LGO + CONOPT times in seconds, separated by a + sign. Again, all run-
times (especially the very small ones) depend also on the state of the computer and
operating system used, and hence the runtimes reported are approximate.

Without going into a detailed numerical analysis of these illustrative results, one
can draw a few key conclusions.

• LGO in itself finds solutions (in its default operational mode, with standard option
settings) for up to 60 circles that are within 93–99.9999% relative precision to the
best solution known.

• All results found by LGO + CONOPT are within 97.5% of the putative optimum,
typically within 99.5% or much higher precision. The addition of CONOPT—when
started from the solution found by LGO—requires a relatively very modest extra
computational effort.

• LGO (or LGO + CONOPT) require a computational effort that apparently scales
well in relation to the model-instance size; the runtimes are also fairly reason-
able considering today’s computers. For example the 60-circle model-instance has

Table 3 Packing identical size circles in the unit circle: summary of results

k LGO LGO + CONOPT Best known result NFE Runtime (sec)

5 0.37019190816 0.37019190816 0.37019190816 17,383 0.125 + 0.016
10 0.26077981223 0.26077981216 0.26225892419 42,678 0.907 + 0.094
15 0.22088519921 0.22088519954 0.22117253909 81,849 3.844 + 0.109
20 0.19522401104 0.19522401102 0.19522401102 131,203 10.344 + 0.016
25 0.17352441376 0.17352441371 0.17382766142 203,233 24.672 + 0.031
30 0.15137590832 0.16080454102 0.16134910906 295,572 50.500 + 0.125
35 0.14656680267 0.14866214852 0.14931677664 356,579 85.031 + 0.109
40 0.13781012238 0.13857348501 0.14037360420 534,093 165.391 + 0.188
45 0.13177203692 0.13177203691 0.13204959425 580,471 221.079 + 0.109
50 0.12569303835 0.12569303835 0.12582548953 739,523 376.484 + 0.078
55 0.11486959821 0.11871318638 0.12178632453 907,129 530.906 + 0.625
60 0.10731691701 0.11469879969 0.11565748013 979,374 669.016 + 1.234

96 J Glob Optim (2007) 38:79–101

121 decision variables and 1,830 mostly non-convex constraints: the combined
LGO + CONOPT runtime is a little over 11 minutes.

To put these numerical results in perspective, let us also mention that in many cases
the best known result has been found by a significant effort both in terms of modeling
(research time) and computational resources—as opposed to the effort reported here
(from a fraction of a second to about 11 min, on a desktop PC). Note furthermore that
if we “tweak” the model and/or the solvers, then the default results shown above can
be improved. Solver option settings could allow LGO to apply more global search
effort, and/or to apply its other solver modes. For example, increasing the global search
effort in LGO to 1,000,000 steps, for k = 10, we obtain the LGO + CONOPT solu-
tion 0.26225892419 in less than 22 seconds: this value coincides with the best known
solution to at least 11 decimals. The modeling procedure itself could also be refined,
e.g., by adding randomized or grid-like initial circle arrangements, using more tight
bounds on r, etc. However, all such “tweaking” has been avoided, since our present
objective is to report results using all GAMS solvers in their default mode.

We have attempted to use also several other solvers to handle this model-class: a
brief summary of our numerical experiments is reported below. CONOPT, MINOS,
and SNOPT—all being high-quality local solvers—have had difficulties in finding fea-
sible solutions when used in a stand-alone mode. Specifically, CONOPT and SNOPT
report model infeasibility for all model-instances considered here. MINOS finds a
local solution for k = 5, then for all other model-instances it reports infeasibility or
too many iterations, without finding a solution.

For the smaller model-instances, the global solver OQNLP (in conjunction with
the local solver LSGRG) finds good quality solutions in a time frame similar to that of
LGO, although the summary report typically states an “Iteration Count Exceeded”
message. Unfortunately, OQNLP does not report program execution timings: how-
ever, in our experiments it could not complete the solution process for k = 40 circles
within the preset 1,000 s time limit.

The global solver BARON solves the k = 5 model-instance in its preprocessing
phase (that uses MINOS), and reports that solution. However, the k = 10 case is
not solved (that is, BARON does not terminate) in 1,200 s. Therefore no further
attempts were made to use BARON in solving larger model-instances. To be fair, let
us remark here that the solution found during preprocessing for the case k = 10 by
BARON+MINOS is, in fact, close to the best known solution. However, thereafter
BARON seems to require a significant amount of time to narrow the gap between
the best solution (lower bound) and the stated upper bound, since the lower bound
found during preprocessing did not improve at all in 1,200 s. (Recall here our earlier
related comment.) As an added note, BARON could not complete even its parser
and preprocessing phase for the k = 60 case in 300 s.

The illustrative test results summarized above indicate that LGO in its default
operational mode—with or without CONOPT—produces good quality numerical
solutions with a reasonable effort, when solving models from an arguably non-trivial
test model-class. The results also demonstrate the need for using global solvers to han-
dle such general nonlinear models. We are convinced that these general observations
are valid, in spite of the unavoidable “bias” aspects of test model selection, solver
settings, and benchmarking methodology. We also strongly believe that it remains
impossible to draw far-reaching conclusions based on a limited set of examples. Our
illustrative numerical results (as well as furthur comparative test results that are not

J Glob Optim (2007) 38:79–101 97

presented here) do not justify the claim “Among the currently available global solvers,
BARON is the fastest and the most robust one. . .” cited from a recent benchmarking
study by Neumaier et al. (2005).

We will not go into further details on benchmarking here which is a substantial
topic in itself. From the related literature we refer only to some recent work with GO
relevance by Dolan and Moré (2002), Pintér (2002), Ali et al. (2005), Khompatraporn
et al. (2005), Neumaier (2005b). GAMS specific studies and numerical results are
discussed e.g., by Bussieck et al. (2003), GAMS Performance World (2003), Pintér
(2003c), Mittelmann and Pruessner (2006), and Ugray et al. (2006). The computa-
tional study Pintér (2003c) includes also many of the standard academic tests known
from the GO literature collected in chapters of Floudas et al. (1999) and available in
GAMS format (GAMS Global World, 2005).

6 Concluding remarks

Computational global optimization is coming of age. Recently, several global opti-
mization solvers have been implemented for use within the framework of prominent
modeling and optimization environments. As a result, global optimization method-
ology and software is increasingly used worldwide, and it already has significant
applications. In addition to its obvious educational perspectives, prominent research
and commercial application areas include biotechnology, chemical and process indus-
tries, econometrics and finance, engineering design, medical research, and scientific
modeling. For a selection of books (and two substantial book chapters) that include
also detailed test results, application examples and case studies, consult e.g. Floudas
(1999), Floudas et al. (1999), Grossmann (1996), Liberti and Maculan (2006), Neu-
maier (2004), Papalambros and Wilde (2000), Pintér (1996a, 2002, 2006), Tawarmalani
and Sahinidis (2002), and Zabinsky (2003).

Regarding LGO implementations and their applications, Pintér (2005b) presents
an overview of several of these with numerical examples. More detailed numerical
studies and specific applications are discussed, e.g., in the following works:

• Minimal potential energy models in computational physics and chemistry (Pintér
2001b, Stortelder et al. 2001)

• Laser design (Isenor et al. 2003)
• Model calibration (Pintér 2003b)
• A detailed benchmarking study using several GAMS model libraries (Pintér

2003c)
• Radiotherapy planning (Tervo et al. 2003)
• Design optimization in acoustic engineering (Pintér and Purcell 2003)
• Various application examples and case studies developed for the Maple platform

(Maplesoft 2004, Pintér and Purcell 2006)
• A comparative numerical study of global optimization tools in Mathematica

(Kampas and Pintér 2005)
• Generalized (non-uniform) circle packings (Pintér and Kampas 2005) and other

object configuration analysis problems (Kampas and Pintér 2006)
• Circle packing models, with industrial application perspectives (Castillo et al. 2005)
• Numerous further applications that are part of proprietary studies.

The listed examples indicate the usability of global optimization technology across an
increasing range of professional studies and real-world applications.

98 J Glob Optim (2007) 38:79–101

Acknowledgements I wish to thank Alexander Meeraus, Steven Dirkse, Armin Pruessner, and other
colleagues at the GAMS Development Corporation, for their contributions to the GAMS/LGO solver
implementation and its tests. Thanks are due also to two anonymous referees for their careful reading
of the paper and for constructive suggestions.

References

Ali, M.M., Khompatraporn, Ch., Zabinsky, Z.B.: A numerical evaluation of several global optimiza-
tion algorithms on selected benchmark test problems. J. Global Optim. 31, 635–672 (2005)

Aris, R.: Mathematical Modeling: A Chemical Engineer’s Perspective. Academic Press, San Diego,
CA (1999)

Bartholomew-Biggs, M.: Nonlinear Optimization with Financial Applications. Kluwer Academic Pub-
lishers, Dordrecht (2005)

Benson, H.P., Sun, E.: LGO—Versatile tool for global optimization. ORMS Today 27(5), 52–55 (2000)
see http://www.lionhrtpub.com/orms/orms-10-00/swr.html

Bliek, Ch., Spellucci, P., Vicente, L.N., Neumaier, A., Granvilliers, L., Monfroy, E., Benhamou, F.,
Huens, E., Van Hentenryck, P., Sam-Haroud, D., Faltings, B.: Algorithms for Solving Nonlin-
ear Constrained and Optimization Problems: The State of the Art. COCONUT Project Report
(2001) For further information on the COCONUT Project, including this downloadable report, see
http://www.mat. univie.ac.at/∼neum/glopt/coconut/index.html.

Bracken, J., McCormick, G.P.: Selected Applications of Nonlinear Programming. Wiley, New York
(1968)

Brooke, A., Kendrick, D., Meeraus, A.: GAMS: A User’s Guide. The Scientific Press, Redwood City,
CA (1988)

Bussieck, M.R., Drud, A.S., Meeraus, A., Pruessner, A.: Quality assurance and global optimization.
Presented at the 1st International Workshop on Global Constrained Optimization and Constraint
Satisfaction COCOS 2002, Valbonne, France (2003)

Castillo, I.: Maple 10 and the Global Optimization Toolbox. ORMS Today 32(6), 56–60 (2005) see
http://www.lionhrtpub.com/orms/orms-12-05/swr.html

Castillo, I., Kampas, F.J., Pintér, J.D.: Solving circle packing problems by global optimization: numerical
results and industrial applications. (Submitted for publication) (2005)

Chong, E.K.P., Zak, S.H.: An Introduction to Optimization, 2nd edn. Wiley, New York (2001)
Cogan, B.: How to get the best out of optimisation software. Sci. Comput. World 71, 67–68 (2003) see

http://www.scientific-computing.com/scwjulaug03review_optimisation.html
Conn, A., Gould, N.I.M., Toint, Ph.L.: LANCELOT: A Fortran Package for Large-Scale Nonlinear

Optimization. Springer-Verlag, Heidelberg (1992)
Diwekar, U.: Introduction to Applied Optimization. Kluwer Academic Publishers, Dordrecht (2003)
Dörner, D.: The Logic of Failure. Perseus Books, Cambridge, MA (1996)
Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles. Math. Pro-

gram. 91, 201–213 (2002)
Drud, A.S.: CONOPT: A System for Large-Scale Nonlinear Optimization, Reference Manual for

CONOPT Subroutine Library. ARKI Consulting and Development A/S, Bagsvaerd, Denmark
(1996)

Edgar, T.F., Himmelblau, D.M., Lasdon, L.S.: Optimization of Chemical Processes, 2nd edn. McGraw-
Hill, Boston (2001)

Ferris, M.C.: MATLAB and GAMS: Interfacing optimization and visualization software. Mathe-
matical Programming Technical Report 98–19. University of Wisconsin, Wisconsin (2005) see
http://www.cs. wisc.edu/math-prog/matlab.html.

Fletcher, R., Leyffer, S.: User Manual for filterSQP. Dundee University Numerical Analysis Report
N/A 181 (1998)

Fletcher, R., Leyffer, S.: Nonlinear programming without a penalty function. Math. Program. 91,
239–269 (2002)

Floudas, C.A.: Deterministic Global Optimization: Theory, Algorithms, and Applications. Kluwer
Academic Publishers, Dordrecht (1999)

Floudas, C.A., Pardalos, P.M., Adjiman, C.S., Esposito, W.R., Gumus, Z.H., Harding, S.T., Klepeis,
J.L., Meyer, C.A., Schweiger, C.A.: Handbook of Test Problems in Local and Global Optimization.
Kluwer Academic Publishers, Dordrecht (1999)

J Glob Optim (2007) 38:79–101 99

Fourer, R.: Nonlinear Programming Frequently Asked Questions. Maintained by the Optimiza-
tion Technology Center of Northwestern University and Argonne National Laboratory (2005)
see http://www-unix.mcs.anl.gov/otc/Guide/faq/nonlinear-programming-faq.html

Frontline Systems: Premium Solver Platform—Field-Installable Solver Engines. Frontline Systems
Inc., Incline Village, NV (2005) see http://www.solver.com

GAMS Development Corporation: GAMS. GAMS Development Corporation, Washington, DC
(2005) see http://www.gams.com.

GAMS Global World: GLOBAL Library: A Collection of Nonlinear Programming Models (2005)
see http://www.gamsworld.org/global/globallib.htm.

GAMS Performance World: PAVER—Automated Performance Analysis & Visualization (2005) see
http://www.gamsworld.org/performance/paver.

Gershenfeld, N.: The Nature of Mathematical Modeling. Cambridge University Press, Cambridge
(1999)

Gill, P.E., Murray, W., Saunders, M.A.: SNOPT: An algorithm for large-scale constrained optimization.
SIAM J. Optim. 12, 979–1006 (2002)

Gould, N.I.M., Orban, D., Toint, Ph.L.: GALAHAD—A library of thread-safe Fortran 90 packages
for large-scale nonlinear optimization. Technical Report RAL-TR-2002-014. Rutherford Appleton
Laboratory, Chilton, Oxfordshire, England (2002)

Grossmann, I.E. (ed.): Global Optimization in Enginnering Design. Kluwer Academic Publishers,
Dordrecht/Boston/London (1996)

Hansen, P.E., Jørgensen, S.E. (eds.): Introduction to Environmental Management. Elsevier, Amster-
dam (1991)

Henrion, D.: A review of the global optimization toolbox for maple. IEEE Control Syst. Mag. (To
appear) (2006) Available online at http://www.laas.fr/∼henrion/papers/mapleglobopt.pdf

Hillier, F.J., Lieberman, G.J.: Introduction to Operations Research, 8th edn. McGraw-Hill, New York
(2005)

Horst, R., Pardalos, P.M. (eds.): Handbook of Global Optimization, vol. 1. Kluwer Academic Pub-
lishers, Dordrecht (1995)

Horst, R., Tuy, H.: Global Optimization: Deterministic Approaches, 3rd edn. Springer-Verlag, Berlin
(1996)

Isenor, G., Pintér, J.D., Cada, M.: A global optimization approach to laser design. Optim. Eng. 4,
177–196 (2003)

Kalwelagen, E.: Interfacing GAMS with other applications. Tutorial and examples. GAMS Devel-
opment Corporation, Washington, DC (2005) See http://www.gams.com/∼erwin/interface/ inter-
face.html

Kampas, F.J., Pintér, J.D.: Global optimization in Mathematica: a comparative numerical study. In:
Proceedings of the 2005 Wolfram Technology Conference Champaign, IL, 2005. http://library.wol-
fram.com/infocenter/Conferences/5824/

Kampas, F.J., Pintér, J.D.: Configuration analysis and design by using optimization tools in Mathem-
atica. The Mathematica Journal 10, 128–154 (2006)

Khompatraporn, Ch., Pintér, J.D., Zabinsky, Z.B.: Comparative assessment of algorithms and software
for global optimization. J. Global Optim. 31, 613–633 (2005)

Lasdon, L.S., Smith, S.: Solving large sparse nonlinear programs using GRG. ORSA J. Comput. 4,
2–15 (1992)

Leyffer, S., Nocedal, J. (eds.): Large scale nonconvex optimization. SIAG/OPT Views News 14 (1)
(2003) Published by the SIAM Activity Group on Optimization (25 pages.) Available online at
http://www.mat.uc.pt/siagopt/.

Liberti, L., Maculan, N. (eds.): Global Optimization: From Theory to Implementation. Springer Sci-
ence + Business Media, New York (2006)

LINDO Systems: LINDO Solver Suite. LINDO Systems Inc., Chicago, IL (2005) see www.lindo.com.
Lopez, R.J.: Advanced Engineering Mathematics with Maple. Electronic book edition published by

Maplesoft Inc., Waterloo, ON (2005)
Maplesoft: Global Optimization Toolbox for Maple. Maplesoft Inc., Waterloo, ON (2004) see

http://www.maplesoft.com/products/toolboxes/globaloptimization.
Maplesoft: Maple. Maplesoft Inc., Waterloo, ON (2005) see http://www.maplesoft.com.
(The) MathWorks: MATLAB. The MathWorks, Inc., Natick, MA (2004) see http:/www.math-

works.com
Maximal Software: MPL. Distributed by Maximal Software Inc. Arlington, VA (2005) see

http://www.maximal-usa.com.

100 J Glob Optim (2007) 38:79–101

McCarl, B.A.: McCarl’s GAMS User Guide (2004) see http://www.gams.com/dd/docs/
bigdocs/ gams2002/. (Current edition dated 2004.)

Melissen, J.B.M.: Packing and Covering with Circles. Ph.D. Dissertation, University of Utrecht, Utr-
echt (1997)

Mittelmann, H.D., Spellucci, P.: Decision Tree for Optimization Software (2005) see http://
plato.asu.edu/guide.html

Mittelmann, H.D., Pruessner, A.: A server for automated performance analysis of benchmarking data.
Optim. Methods Softw. 21, 105–120 (2006)

Murray, J.D.: Mathematical Biology. Springer-Verlag, Berlin (1983)
Murtagh, B.A., Saunders, M.A.: MINOS 5.4 User’s Guide. Technical Report SOL 83-20R (Revised

edn.) Department of Operations Research, Stanford University, Stanford, CA (1995)
Neumaier, A.: Complete search in continuous optimization and constraint satisfaction. In: Iserles, A.,

(ed.) Acta Numerica 2004, pp. 271–369. Cambridge University Press, Cambridge (2004)
Neumaier, A.: Global Optimization (2005a) see http://www.mat.univie.ac.at/∼neum/ glopt.html.
Neumaier, A.: COCONUT Project (2005b) see http://www.mat.univie.ac.at/∼neum/ glopt/coconut/

index.html.
Neumaier, A., Scherbina, O., Huyer, W., Vinkó, T.: A comparison of complete global optimization

solvers. Math. Program. 103, 335–356 (2005)
Papalambros, P.Y., Wilde, D.J.: Principles of Optimal Design. Cambridge University Press, Cambridge

(2000)
Paragon Decision Technology: AIMMS. Paragon Decision Technology BV, Haarlem, The Netherlands

(2005) see http://www.aimms.com.
Pardalos, P.M., Resende, M.G.H. (eds.): Handbook of Applied Optimization. Oxford University Press,

Oxford (2002)
Pardalos, P.M., Romeijn, H.E. (eds.): Handbook of Global Optimization, vol. 2. Kluwer Academic

Publishers, Dordrecht (2002)
Pintér, J.D.: Global Optimization in Action (Continuous and Lipschitz Optimization: Algorithms,

Implementations and Applications). Kluwer Academic Publishers, Dordrecht (1996a)
Pintér, J.D.: Continuous global optimization software: A brief review. Optima 52, 1–8 (1996b) see

http://plato.la.asu.edu/gom.html.
Pintér, J.D.: LGO—A program system for continuous and Lipschitz optimization. In: Bomze, I.M.,

Csendes, T., Horst, R., Pardalos, P.M., (eds.) Developments in Global Optimization, pp. 183–197.
Kluwer Academic Publishers, Dordrecht (1997)

Pintér, J.D.: Computational Global Optimization in Nonlinear Systems—An Interactive Tutorial.
Lionheart Publishing, Inc. Atlanta, GA (2001a) see http://www.lionhrtpub.com/books/globaloptim-
ization.html.

Pintér, J.D.: Globally optimized spherical point arrangements: model variants and illustrative results.
Ann. Oper. Res. 104, 213–230 (2001b)

Pintér, J.D.: Global optimization: software, test problems, and applications. In: Pardalos, P. M., Rome-
ijn, H. E. (eds.) Handbook of Global Optimization, vol. 2, pp. 515–569. Kluwer Academic Publishers,
Dordrecht (2002)

Pintér, J.D.: GAMS/LGO (User Guide) (2003a) http://www.gams.com/solvers/lgo.pdf
Pintér, J.D.: Globally optimized calibration of nonlinear models: techniques, software, and applica-

tions. Optim. Methods Softw. 18, 335–355 (2003b)
Pintér, J.D.: GAMS/LGO nonlinear solver suite: key features, usage, and numerical performance

(2003c) http://www.gams.com/solvers/GAMS_LGO_paper.pdf
Pintér, J.D.: The Maple Global Optimization Toolbox. Technical report; downloadable from the prod-

uct page (2004) http://www.maplesoft.com/products/toolboxes/globaloptimization.
Pintér, J.D.: LGO – A Model Development System for Continuous Global Optimization. User’s

Guide. (Current revised edition.) Pintér Consulting Services, Inc., Halifax, NS (2005a)
Pintér, J.D.: Nonlinear optimization in modeling environments: software implementations for com-

pilers, spreadsheets, modeling languages, and integrated computing systems. In: Jeyakumar, V.,
Rubinov, A.M. (eds.) Continuous Optimization: Current Trends and Applications, pp. 147–173.
Springer Science + Business Media, New York (2005b)

Pintér, J.D.: AIMMS/LGO solver engine: a brief introduction and user’s guide (2005c) see http:// www.
aimms.com/aimms/download/solvers/aimms_lgo_solver_engine_introduction_and_ user_guide.pdf

Pintér, J.D.: Nonlinear optimization with MPL/LGO: introduction and user’s guide. Distributed by
Maximal Software, Inc., Arlington, VA, USA (2005d) www.maximal-usa.com.

Pintér, J.D. (ed.): Global Optimization—Scientific and Engineering Case Studies. Springer
Science + Business Media, New York (2006)

J Glob Optim (2007) 38:79–101 101

Pintér, J.D., Holmström, K., Göran, A.O., Edvall, M.M.: User’s Guide for TOMLAB/LGO. TOMLAB
Optimization AB, Västerås, Sweden (2004). see http://tomlab.biz/docs/ TOMLAB_LGO.pdf

Pintér, J.D., Kampas, F.J.: MathOptimizer Professional—An Advanced Modeling and Optimization
System for Mathematica, Using the LGO Solver Engine. User’s Guide. Pintér Consulting Services
Inc., Halifax, NS (2003)

Pintér, J.D., Kampas, F.J.: Nonlinear optimization in Mathematica with MathOptimizer Professional.
Math. Educ. Res. 10(2), 1–18 (2005)

Pintér, J.D., Kampas, F.J.: MathOptimizer Professional: key features and illustrative applications. In:
Liberti, L., Maculan, N. (eds.) Global Optimization: From Theory to Implementation, pp. 263–280.
Springer Science + Business Media, New York (2006)

Pintér, J.D., Linder, D., Chin, P.: Global Optimization Toolbox for Maple: an introduction with
illustrative applications. Optim. Methods Softw. 21, 565–582 (2006)

Pintér, J.D., Purcell, C.J.: Optimization of finite element models with MathOptimizer and
ModelMaker. Proceedings of the 2003 Mathematica Developer Conference, Champaign, IL. (2003)
Available at http://library.wolfram.com/infocenter/Articles/5347/

Powell, M.J.D.: UOBYQA: unconstrained optimization by quadratic approximation. Math. Program.
92, 555–582 (2002)

Schittkowski, K.: Numerical Data Fitting in Dynamical Systems. Kluwer Academic Publishers,
Dordrecht (2002)

Specht, E.: www.packomania.com (2005)
Steeb, W-H.: The Nonlinear Workbook, 3rd edn. World Scientific, Singapore (2005)
Stojanovic, S.: Computational Financial Mathematics Using Mathematica. Birkhäuser, Boston (2003)
Stortelder, W.J.H., de Swart, J.J.B., Pintér, J.D.: Finding elliptic Fekete points sets: two numerical

solution approaches. J. Comput. Appl. Math. 130, 205–216 (2001)
Strongin, R.G., Sergeyev, Ya.D.: Global Optimization with Non-Convex Constraints: Sequential and

Parallel Algorithms. Kluwer Academic Publishers, Dordrecht (2000)
Tawarmalani, M., Sahinidis, N.V.: Convexification and Global Optimization in Continuous and

Mixed-Integer Nonlinear Programming: Theory, Algorithms, Software, and Applications. Kluwer
Academic Publishers, Dordrecht (2002)

Tervo, J., Kolmonen, P., Lyyra-Laitinen, T., Pintér, J.D., Lahtinen, T.: An optimization-based approach
to the multiple static delivery technique in radiation therapy. Ann. Oper. Res. 119, 205–227 (2003)

TOMLAB Optimization: TOMLAB. TOMLAB Optimization AB, Västerås, Sweden (2005)
http://www.tomlab.biz

Ugray, Z., Lasdon, L., Plummer, J., Glover, F., Kelly, J., Marti, R.: A multistart scatter search
heuristic for smooth NLP and MINLP problems. INFORMS J. Comput. (To appear.) (2006). See
http://www.utexas.edu/courses/lasdon/ijocmultistart5.htm.

Vanderbei, R.J.: LOQO User’s manual—version 3.10. Optim. Methods Softw. 12, 485–514 (1999)
Waltz, R., Nocedal, J.: KNITRO 2.0 User’s Manual. Technical Report OTC 2003/05, Optimization

Technology Center, Northwestern University, Evanston, IL (2003) see also Ziena Optimization,
Inc. http://www.ziena.com/knitro/manual.htm.

Wass, J.A.: Global optimization with Maple. Sci. Comput. 24, 16 (2006)
Wolfram Research: Mathematica. (2005) see http://www.wolfram.com/
Wright, M.H.: Direct search methods: once scorned, now respectable. In: Griffiths, D.F., Watson,

G.A. (eds.) Numerical Analysis 1995: Proceedings of the 1995 Biennial Conference on Numerical
Analysis, pp. 191–208. Addison Wesley Longman Ltd, Reading, MA (1996)

Zabinsky, Z.B.: Stochastic Adaptive Search for Global Optimization. Kluwer Academic Publishers,
Dordrecht (2003)

	Nonlinear optimization with GAMS /LGO
	Abstract
	Introduction
	Global optimization: model statement and specifications
	LGO solver suite: algorithm components and current implementations
	GAMS and the GAMS /LGO solver option
	Using GAMS /LGO: illustrative examples
	Concluding remarks
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

